FAQ : SSS Enumeration

Introduction

Enumerations are useful, both theoretically and practically. The existence of a set enumeration
guarantees that the set is at most countably infinite. For example, an enumeration of the rationals
proved that there are the same number of fractions as integers, while a proof that no enumeration of
the reals exists showed that the real numbers are uncountable. More usefully, an enumeration assigns
an index to every member of the set under consideration, giving a practical means to consider every
case. This makes enumeration a powerful part of the methodology found in NKS (“New Kind of
Science”).

Sequential substitution systems (SSS or “sessies”) are defined by sets of rules (here called "rulesets"),
each consisting of a target string and a replacement string. Given some initial state (which may also be
represented as a string) these rules are applied and the system evolves. But without a well-defined
enumeration of strings and rulesets any treatment of sequential substitution systems will be haphaz-
ard and may miss important features. To develop an enumeration of all sessie rulesets, it was first
necessary to enumerate all strings and then all lists of all strings. These enumerations can be used or
modified for other applications based on rulesets and initial state strings (for example, non-sequential
substitution systems, multiway systems, etc.).

In developing an enumeration, previous successful enumerations can be studied to good advantage.
More detail on these initial steps can be found here (from which some of the following summary is
taken):

http://www.mathematica-journal.com/2011/05/indexing-strings-and-rulesets/

Enumeration of all Rationals

Cantor’s Diagonalization

There are ways to create an ordered list of things that grow infinitely in two different “directions”. One
is Georg Cantor's famous diagonal ordering of the rational numbers:

http://www.mathematica-journal.com/2011/05/indexing-strings-and-rulesets/

2 | FAQ SSS enumeration.nb

3/1 5/ 1

1M

Y / j /

212 3/2 4]2 5/2
A

1/3/2//3/3/4/3 5/3

114 214 3/4 4/4 B
>

1/5/2/5 35 45 G5

Both the numerator and the denominator of the fraction are taken from an infinite (but countable)
set, and rather than trying to treat one infinity first, as in {1/1, 2/1, 3/1, ... 1/2,2/2,3/2, ..., 1/3, 2/3, 3/3,
.. }, this method allows growth in both directions to continue indefinitely, following a defined pattern
while clearly including all possible combinations. One drawback of this method as applied to fractions
is that equivalent fractions get counted multiple times. For example 1/1=2/2=3/3=...,1/2=2/4=3/6
., etc. Another (possible?) drawback is that for a given pair of integers {a,b}, a/b occurs in the list far
earlier than b/a.

See also:
https://demonstrations.wolfram.com/EnumeratingTheRationalNumbers/
https://demonstrations.wolfram.com/APathThroughTheLatticePointsInAQuadrant/

The mathematics literature contains many examples of non-repetitive ways of ordering the rationals,
but none of the non-repetitive sequences has the simple clarity of the diagonal arrangement. Is it so
bad to have duplicates and then be forced to ignore or drop them later? This is an important question
that will return in various situations. Although a little inelegant, the existence of duplicates hurts
nothing essential, so we'll consider non-repetition a desirable but not necessary feature.

What is essential then?

1. The non-ambiguity of the list: it can be generated out to any desired number of elements, and the
order can be unambiguously described. Here the fractions are listed in increasing order first by sum
of numerator and denominator (as colored in the figure above), next by numerator.

2. The existence of a successor algorithm: from a given fraction n/d, can the next fraction in the list be
found? Yes, if d > 1, the next fractionis (n + 1)/(d - 1), elseif d =1, itis 1/(n + 1). This means that we
do not need to generate the whole list at once, we can proceed one step at a time, perhaps testing
or making some use of the fractions as they are generated. A small modification to the successor
algorithm lets us easily bypass duplicates: if the successor found is not a fraction reduced to lowest
terms, advance to jts successor.

3. The existence of rank and unrank functions, to convert back and forth between the list and an
ordered list of integers. (Given such functions the definition for successor[element] might be as

FAQ SSS enumeration.nb | 3

simple as unrank[rank[element]+1], if no direct method of advancing through the enumeration has
been found.) For the diagonal ordering, we must determine which diagonal we want and then
which element. The fraction n/d appears on the (n + d - 1)" diagonal and is element n on that
diagonal. An easy way to do this is create a function to generate the n triangular number (the total
number of entries in the previous diagonals), then add n. For an implementation of successor, rank
and unrank for the Cantor enumeration of the rationals, see the paper referenced above.

Nonrepetitive Indexing of the Rationals
... based on Prime Factorization

As already mentioned, there are 1-1 and onto (bijective) mappings between the set of rationals (either
all rationals or the positive rationals) and Z*, the set of positive integers. One elegant algorithm relies

on the Fundamental Theorem of Arithmetic (also known as the Unique-Prime-Factorization Theorem):
any integer greater than 1 can be written as a unique product of prime numbers (up to ordering of the

factors). For example,

in[201:= showFactorization = Row[{#, " == ", Row[Superscript @ee FactorInteger[#], "x"]}] &
showFactorization[3083080]

Out[30]=
3083080 = 23x5'x7%x112x13!

If the prime numbers are listed in order, the sequence of exponents provides a unique way to charac-
terize each positive integer. For the above example the sequenceis{3,1,2,2,1,0,0,0, ...}. But the
same can be said of all possible numerators and denominators of rational numbers, and furthermore,
when a fraction is reduced to lowest terms no prime factor will appear in both the numerator and
denominator, a fact which motivates the following algorithm, in which odd exponents define factors
of the numerator, even exponents the denominator:

in(311:= IntegerToRationalByFactorization[n_Integer] :=
Times ee (nlIf[E"e"Q[”Zl"”z’z’ #2:1)/2] g @@e FactorInteger[n])

IntegerToRationalByFactorization[2® « 3% 5% . 72 . 117]
2200

63

in[-1:= showFactorization[2200 / 63]

Out[«]=
2200

—— = 22x32x5%x7tx11?

63
Note that even exponents in the factored integer are halved and then used as the exponents of the
same prime factors in the denominator, odd exponents are halved, rounded up and similarly used to
specify the numerator. Of course this procedure is not unique, the treatment of odd and even expo-

4 | FAQ SSS enumeration.nb

In[«]:=

Out[«]=

In[32]:=

nents could just as well be reversed. A disadvantage of this method of ordering the rationals is the
order itself: it preferentially treats integers (and in general, small denominator fractions) before
others.

IntegerToRationalByFactorization /@ Range[50]

1 1 3 1 2 5 1
{1, 2,3,-,5,6,7,4, -, 10, 11, —, 13, 14, 15, —, 17, —, 19, —, 21, 22, 23, 12, —, 26, 9,
2 3 2 4 3 2 5
7 1 11 5 3.1 2
~, 29, 30, 31, 8, 33, 34, 35, —, 37, 38, 39, 20, 41, 42, 43, —, =, 46, 47, —, —, f}
2 6 2 3 4 7 5

The ordering function is well-defined, 1-1 and onto, but for example, 2/5 is far later in the list than 5/2,
appearing after the integers 47 and 17, respectively. This may not necessarily be appropriate for some
applications.

Calkin-Wilf Tree

[«] CalkinWilfTree [4]

:
1 3 2

1 3 4 3 2 5 2 3 5 3 .
IQS 4[]7 BDS SD7 ZD7 SDS 3[]7 4@
5 4 7 3 8 5 7 2 7 5 8 3 7 4 5
https://demonstrations.wolfram.com/CalkinWilfTreeOfFractions/

https://demonstrations.wolfram.com/TheTreeOfAllFractions/

The Calkin-Wilf binary tree includes all positive fractions, already reduced to simplest terms. It has
nodes of type ‘—; (starting with %) with subnodes a—i'b and a—;b.

Note: this enumeration can be expressed in terms of the hyperbinary function.

hb[@] = 1;
hb[n_?0ddQ] := hb[n] = hb[(n-1) /2];
hb[n_?EvenQ] := hb[n] = With[{k=n/2}, hb[k-1] + hb[k]]

hb /@ Range [0, 25]
{1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,5,4,7,3,8,5,7, 2,7, 5}

(The additional "hb[n]="in the recursion calls is Mathematica's standard method of saving the
results of all function calls so they will not need to be recalculated. Its effect can be seen by executing
ll?hbll.)

In[35]:=

In[«]:=

Out[«]=

FAQ SSS enumeration.nb | 5

? hb

Now the ordered list of rationals is obtained by forming ratios of adjacent elements of the hyperbinary
list. Specifically,

hbQ[n_] :=hb[n-1] /hb[n]
hbQ /@ Range[25]
1 1 3 2

1
{1:7)217:7:7.» 3:7
2 3 2 3 4

Stern-Brocot Tree

[=] SternBrocotTree [4]

1 2 3 4 5

; Lo
1 2 3 3 4 5 5 4 5 7 8 7 7 8 7

5 7 8 7 7 8 7 5 4 5 5 4 3 3 2

Note: A bit-reversal permutation of the Calkin-Wilf tree gives the Stern-Brocot tree.
https://demonstrations.wolfram.com/SternBrocotTree/

https://demonstrations.wolfram.com/FractionTreeAndContinuedFractions/

https://demonstrations.wolfram.com/TwoEnumerationsOfTheRationals/

Side-trip: Enumerations of all PPTs, NPTS, PTS (primitive / nearly-primitive
Pythagorean Triples):

Several enumerations of Pythagorean Triples (PTS) and Primitive Pythagorean Triples (PPTs) exist. All
of them can be represented by trees and by functions associating a PT with an integer:

https://demonstrations.wolfram.com/PrimitivePythagoreanTriples30rderedTreeGraph/
https://demonstrations.wolfram.com/ABinaryBasedEnumerationOfThePrimitivePythagoreanTriples/
https://demonstrations.wolfram.com/EnumeratingPrimitivePythagoreanTriples/

https://demonstrations.wolfram.com/EnumerationOfAllPythagoreanTriples/

Enumeration of all Strings

6 | FAQ SSS enumeration.nb

The enumeration of all possible strings, unbounded in both length and size of alphabet used, was
published in 2011. The enumeration was clarified as a binary tree in 2012.

https://demonstrations.wolfram.com/UniversalStringEnumeration/ :

| sample sample with details
index

f ;
s oo of ¢ ﬂﬂﬂjﬂjﬂﬂﬂﬂﬂﬂﬂjﬂﬂﬂﬂﬂd

index - string string - index

Each index corresponds to

in%ex o string we(i) ht exactly one string, and all possible
1 o A 1 strings of any length with all possible
2 o AA 2 characters will appear in this
3 © B 2 enumeration, if continued far enough.
4 © AAA 3
5 © AB 3 . .
6 PN BA 3 Strings appear in order of
7 o C 3 weight: the weight of the string
8 o AAAA 4 is the total of the weights of its
9 © AAB 4 characters ('A'»1, 'B'-2, ...)
10 o ABA 4
11 © AC 4
12 © BAA 4 Note that there is 1 = 2° string of weight
13 o BB 4 1, there are 2 = 2" strings of weight 2, 4
12 : CDA j = 22 strings of weight 3, and in general
16 o AAAAA 5 2%-1 strings of weight w.
17 o AAAB 5
18 AABA S Within each weight group,
19 o AAC 5 tri dered dina t
20 o ABAA 5 strings are ordered according to an

algorithm shown by the examples.

In the enumeration, all strings appear in order of “weight”, with the weight originally maximally
spread out. See “sample with details” to understand the algorithm.

https://demonstrations.wolfram.com/TreeOfStrings/ :

in(se]:= toCharacterWeights[string_String] := (ToCharacterCode[string] - 64);
fromCharacterWeights[1l: {___Integer}] := FromCharacterCode[l +64];
UnrankComposition[i_Integer] := Module[{w = BitLength[i], t = 1},

Reap[Scan[If[# == 0, Sow[t];
t=1, t++] &, IntegerDigits[i-2"(w-1), 2, w-1]];

FAQ SSS enumeration.nb | 7

Sow[t]]1[2, 117;
RankComposition[w: {__Integer}] :=
FromDigits [Flatten[{1, Riffle[Table[1, {#}] & /@ (Ww-1), ©]}]1, 2];
UnrankString[i_Integer] := fromCharacterWeights [UnrankComposition[i]];
RankString[s_String] := RankComposition[toCharacterWeights[s]];
UnrankStringList[i_Integer] :=
Module[{w = IntegerLength[2i-1, 3] -1, j, ans = {{1}}},
j=(i-1)-(3"-1) /2;
Scan[
Switch[#,
0, AppendTo[ans, {1}],
1, AppendTo[ans[-1], 1],
2, ans[[-1] [-1] ++
18&,
IntegerDigits[j, 3, w]
15
fromCharacterWeights /@ ans
|5
RankStringList[sl_List] := Module[{wl = toCharacteriWeights /@ sl, w, code = ""},
w = Total [Flatten[wl]];
While[wl # {{1}},
If[wl[-17[-1] > 1, code = "2" <> code; wl[-1][-1]--,
If[wl[-1][-1] == 1 && Length[wl[-1]] > 1,
code = "1" <> code; wl[-1] = Most[wl[-1]1],
If[wl[-1] == {1}, code = "@" <> code; wl = Drop[wl, -1]1]111;
FromDigits[code, 3] + (3" -1) /2+1
];
ExplainStringlListRank[i_Integer] :=
Module[{w = IntegerLength[2i-1, 3] -1, j, d, ans = {{1}}},
j=(i-1)-(3"-1)/2;
Scan[
Switch[#, @, AppendTo[ans, {1}], 1, AppendTo[ans[-1], 1], 2, ans[-1] [-1] ++] &,
(d = IntegerDigits[j, 3, w])1;
Row[{"index: ", i, " = (", Superscript[3, w], "+1)/2 +
If[#="", {}, #] & @ StringJloin[ToString /@d], 3]1}]
]

children[{Rule[x_, n_], e_, base_:2}] := Switch[base,
2, {{nh>2n,0, 2}, {(n>2n+1, 1, 2}},
3, {{n»3n-1,0, 3}, {(n»>3n,1, 3}, {(n>3n+1, 2, 3}}
15
children[1l_List] := Flatten[children /e 1, 1];
tree[n_, mode_, level , num_] := Most /@
((Flatten[Rest [NestList[children, {1 - n, ©, num}, level]], 1] /.
Rule[a_Integer, b_Integer] :» (mode /@ Rule[a, b])));

Manipulate[

base = Switch[mode, UnrankStringList, 3, _, 2];

', Subscript[

8 | FAQ SSS enumeration.nb

Text@Pane [Column [{
Switch[base,
2, Style[Row[{"index: ", start, " = ",
Subscript [StringJoin[ToString /@ IntegerDigits[start, 2]], 2]}], "Menu"],
3, Style[ExplainStringListRank[start], "Menu"]
] k)
Switch[base,
2, Row[{
Style["traverse tree: ", "Menu"],
Button["left (9)", start x= 2],
Button["right (1)", start = 2start +1],
Button["up", start = Max[1, Quotient[start, 2]]],
Button["random", start = RandomInteger[{1, 10°10}]1],
Button["reset", start = 1],
Style[Row[{" (weight: ", BitLength[start], ")"}], "Menu"]
}])
3, Row[{
Style["traverse tree: ", "Menu"],
Button["left (@)", start = 3start-1],
Button["mid (1)", start = 3 start],
Button["right (2)", start = 3start +1],
Button["up", start = Max[1, Quotient[start + 1, base]]] ,
Button["random", start = RandomInteger[{1, 10°10}]],
Button["reset", start = 1],
Style[Row[{" (weight: ", IntegerLength[2start-1, 3], ")"}], "Menu"]
}

1,
TreePlot [tree[start, mode, levels, base],
VertexLabeling -» True, DirectedEdges - True,
AspectRatio -» .5, BaseStyle -» {Bold, Larger}, ImageSize - 600]
3
ImageSize » {600, 400}],
{{levels, 3}, {1, 2, 3, 4}},
{ {mode, UnrankString}, {Identity -» "index", UnrankComposition - "composition",
UnrankString -» "string", UnrankStringList -» "string list"}},
{start, 1, ©, 1, ControlType - None},
{base, {2, 3}, ControlType -» None}, SaveDefinitions -» True, ControlPlacement - Top]

FAQ SSS enumeration.nb | 9

Out[48]=

oot j ilj A

mode ind".

composition § string string Iist|

index: 1 =1,

traverse tree: | left (0) || right (1) || up || random

reset | (weight: 1)

A

This is the universal string enumeration shown in tree form. In the tree, descend to the Left in order to
append an “A” to the string, to the Right to increment the final character of the string. The root of the
tree is a single “A”. The digits shown on the branches leading to a particular node are the successive
bits of the index corresponding to the string at the node. (First bit -- not shown -- is always a “1”.) So

11000, corresponds to “BAAA”. Every binary number uniquely identifies a string, and all strings are
(somewhere!) in the tree.

Original Sessie Enumeration
The first attempt to enumerate sessies was published here:

http://www.mathematica-journal.com/2011/05/indexing-strings-and-rulesets/

The article delineates the step-by-step process involved in creating a limited enumeration of strings,
then a universal enumeration of all strings (think “all words in all languages”), an enumeration of all
lists of strings (think “all books in all languages”), and finally a first attempt at enumerating all sessie

http://www.mathematica-journal.com/2011/05/indexing-strings-and-rulesets/

10 | FAQ SSS enumeration.nb

rule sets. The latter did include all sessie rulesets, but unfortunately produced 25% of them twice. It
has now been replaced by enumerations that avoid that duplication and that allow “long-jump”

predictions based on simpler mathematical relationships.

Updated Sessie Enumerations

Generalized Sessie Enumeration

We simplified and generalized the enumeration algorithm (the subject of a paper by Caviness, Case,
Morrow & Kratzke, published in 2020). The new fully general algorithm based works equally well for
rulesets of sequential substitution systems (sessies) and multi-way substitution system (“messies”).
The code specifying rule set construction starts with one base-2 digit followed by zero or more base-5
digits. The first bit specifies whether (0) to use an empty string or (1) start with an “A” (a non-empty
string) in the first rule set. Further base-5 codes progressively modify the rules, until the desired rule
set has been constructed, as will be explained below. This construction effectively defines a one-to-
one and onto relation between the positive integers and the set of all conceivable rulesets.

Here are the first 62 rule sets in the Generalized Sequential Substitution System Enumeration, suitable

for sessies and messies:

1: 025 :

2 : 125 :

3 : 07205 :

4 : 0215 .

5 : 9225 :

6 : 0535 :

7 : 0245 :

8 : 1205 .

9 : 1215 :

10 : 1225 :
11 : 1,35 :
12 : 1245 :
13 : 02995 :
14 : 02915 :
15 : 0,025 :
16 : 02935 :
17 : 02045 :
18 : 02105 :
19 : 03115 :
20 : 02125 :
21 : 02135 :
22 : 02145 :
23 : 02205 :
24 : 02215 :
25 : 02225 :
26 : 02235 :
27 : 92245 :
28 : 92305 :
29 : 02315 :
30 : 02325 :
31 : ©233c :

UAT
[UAT -
{"A"
{"AA" -
{vB"

-> "A™)

(A" -

->

->

->

A",
A",
A"
"AATS
ngny
"“’

nn
>

npn
npn
npn
npn
npn
npn
npn
npn
npn
npn
npn
npn
npn
npn
npn
npn
"AAT
"AA",
"AA"

->
"AY

"AAA" Y

"A")

s AN

.
G

npn

->

"AAT

ngn _

->
->

o _

->

g _

g _

nn
2

"A")

, "A" -
"A")

-> "A")
, "A" -
"A"}

https://www.complex-systems.com/abstracts/v29_i04_a04
https://www.complex-systems.com/abstracts/v29_i04_a04

FAQ SSS enumeration.nb | 11

< -

32 : 9345 @ ("" -> "AB™)

33 : 0,405 : ("M —» "B, "M oy mw ompn o owwy
34 : 0,415 @ {"" -> "B", "" _» "A")

35 : 0,425 : ("' -» "B", "A" -» "™}

36 : 62435 . ': nn - IIBAII :

37 : 0,445 : {"" -» "C")

38 : 1,005 : {"A" > "M, MM oy WAM_ mm o ownwpn o owny
30 : 1,015 : {"A" —» "M, WMoy mpn_ mmo o wpamy
40 : 1,025 : {"A" -y "M, M _y wpn wpn o _o owey
41 : 1,835 : {"A" —» "U, "M o omApny

42 : 1,045 : {"A" —» "M, "v _y wgw)

43 : 1,105 : {"A" —» "M, AN oo oww o wpmy
44 : 1,105 : {"A" - "M, A" oo wpn o owey
45 : 1,125 : (A" —» ", A" 5 "AM)

46 : 1,135 : {"A" —» ", "AA" _» "™}

47 : 1,145 : {"A" -» "M, "B _n "m)

48 : 1,205 : {"A" —» A", "M _y wn o owpn o _o owmy
49 : 1,215 : {"A" —» "A", "" s "A")

50 : 1,225 : {"A" -> "A", "A" -» "™}

51 : 15235 : {"A" -> "AA"}

52 : 1,245 : {"A" -> "B"}

53 : 1,305 : {"AA" -> "M, "M oy owaAmy

54 : 1,315 : {"AA" —> "M, "A" _» "My

55 : 1,325 : {"AA" -> "A")

56 : 15335 : {"AAA" -> ""}

57 : 1,345 : {"AB" -> "™}

58 : 1,485 : {"B" -> "", "" _» "A")

59 : 1,415 : {"B" -» "", "A" _» "™}

60 : 1,425 : {"B" -> "A"}

61 : 15435 : {"BA" -> ""}

62 : 1,845 : {"C" -> "™}

Reduced Sessie Enumeration

The Reduced Sessie Enumeration uses only quinary (base-5) codes, meaning that you never start with
an empty string in the first rule. The function FromReducedRankindex[n] gives the n'" ruleset in the
reduced quinary enumeration. The first 40 rulesets are listed below. If we define the weight of a
ruleset as the sum of the individual letters, with A=1, B=2, C=3, ..., it is clear that in this list (as in the
GSSS Enumeration), weight 1 rulesets (containing only 1 letter, an A) all appear before weight 2
rulesets (containing either 2 As or 1 B), and weight 2 rulesets come before those of weight 3 in the list,
etc. This ordering of rulesets is what makes “long-jumps” and the accelerated looping through the
enumeration possible.

Since all rulesets containing an insertion rule (“” -» something) will be discarded by TestForConflict-
ingRules, if the insertion rule is not the last rule, the only way an insertion rule can be the first one is if
the ruleset has only the one rule. A solo insertion rule can never delete cells, and so cannot produce a
network. Therefore it is logical to eliminate all initial insertion rule cases, and this can easily be done
by an adjustment to the enumeration itself, basically dropping the first (binary) digit of the GSSS
enumeration.

12 | FAQ SSS enumeration.nb

inf-]:= {#["Index"], ": ", Subscript[#["QCode"], 5], ": ", InputForm[#["RuleSet"]]} & /e
FromReducedRankIndex /@ Range[40] // Grid[#, Alignment - Left, Spacings -» 0] &

Out[«]=

O oo NOUVT A WNEBR

A WWWWWWWWWWNNDNNMNNNMNMNMNMNMNNMNMNRPRRPRPRPRRERRELPR
O VWO NOTUPDA,WNROLVLONOOTUUPDEWNROOLVONOOTUPDEWDNRDO

‘5
: O
: 1
: 2,
: 35
: 4

P 005 ¢
P 015 ¢
P02 ¢
: 035 ¢
P 045
: 105 ¢
: 115
: 12
135 ¢
: 14
: 205 ¢
: 21
P22
: 235 ¢
P 245
: 305 ¢
: 31g ¢
: 32
: 335 ¢
P 345
: 405
M
P42
: 435
P 44
: 000s:
: 001;5:
1 0025:
i 003;5:
P 0045:
: 010s:
: 011s:
P 0125:
: 0135:

(A")

{"A" > "t s AT
{"A" - """, A" 5 "My
{"A" > "A"}

{"AA" > ""}

("B" > ")

{"A" > "t "t S AT,
R Y
{"A" > "t "t S AT,
{"A" > "ty "t 5 "AAMY
{"A" - """, """ -5 "B"}
{"A" > """, "A" 5 MM,
{"A" - """, "A" S5 MY,
{"A" - """, "A" - "A"}
{"A" > """, "AA" > """}
{"A" - "", "B" - ""}
(MA" o AT,
{"A" - "A", "" > "A"}
{"A" - "A", "A" > ""}
{"A" > "AA"}

{"A" - "B"}

{"AA" > "", "" -5 "A"}
{"AA" > "", "A" 5 ""}
{"AA" > "A"}

{"AAA" - ""}

{"AB" - ""}

{"B" - "", "" > "A"}
{("B" - "", "A" > ""}
{"B" - "A"}

{"BA" > ""}

(e sy

{"A" > "t "t S AT,
{"A" > "ttt o AT,
{"A" - ", "M S AT,
{"A" > "t "t S AN,
{"A" > "t S AT,
{"A" > "t "t S AT,
{"A" > "ttt S AT,
{"A" > "t " S AT,
{"A" > "t "t S AT,

AT

AT

S oA
me ATy

N

"}

A"
"}

At - "M

nu

nn

nu

nu

nu

nn

nu

N N R R AN

nn n
3

A
wawpw
A

nn n
3

N
N
N

me ARt

wn o ngn
T
A",
A"
"AA" }

nn

"

Tt S AT
", MAT 5
A"
"}

>

- "", "A" > ""}
- "A"}

"A" >

"}

The RSS enumeration contains the same rulesets as the GSS enumeration in the same order, with

initial insertion rules removed. The encoding is also the same, except for the removal of the initial bit
that distinguished between rulesets beginning with an empty string and those not. The decision was
made to use the RSS enumeration by default, since initial insertion rules have simple, well-under-

stood behavior.

Within any given weight, advancing through the enumeration tends to compact the weight into fewer
characters, moving it gradually towards the left. So the most spread out ruleset of weight 3, {“A”->“”,

FAQ SSS enumeration.nb | 13

P CpT e A4 s the first of this weight in the list, {“A”»“”, “?»“B”} appears further down,
and {“C"-»>“"}is the last of this weight, with the entire weight compacted to the left.

Note: The “most spread out” rulesets have exactly 2 empty strings between single “A” strings, since
we want to include the possibility of deletion rules (where the replacement string is “”) and insertion
rules (where the search string is “”), and the possibility that an insertion might follow right after a

«“» «w»

deletion, thus putting 2 empty strings in sequence. E.g., {“A">“", “”’»“B”}. But we will never need

“»

more than 2 consecutive empty strings! Unfortunately this algorithm also produces “”-“” rules,

which are always unnecessary, as are (for sessies) non-final insertion rules. More on the solution to
these problems below.

The algorithm is guaranteed to produce all valid rulesets somewhere in the list, if one goes far enough.
It can easily be seen that there is no limit on the number of rules in the ruleset: all cases will eventually
occur, and all combinations of all letters will eventually appear everywhere in the ruleset.

As already mentioned, this does generate some unneeded cases, e.g., with empty strings at too many
positions in the ruleset, such as nothing - nothing rules, or multiple nothing -» something rules -- only
the first one could ever be used, or indeed any case where an insertion rule appears before the final
position in the ruleset. But the most important thing is that all cases we want to study are included,
and there is no repetition at all in the enumeration. It is also worth noting that this enumeration never
produces invalid rulesets.

Explanation of Q-Codes

= 0: end this string, insert two empty strings and start a new string with an "A"

m 1: end this string, insert one empty string and start a new string with an "A"

m 2: end this string and start a new string with an "A"

m 3: end this character and start a new character (as an "A")

m 4: increment this character

Try constructing some rulesets by hand, using the RSS enumeration, starting with an empty g-
code and a single “A”. Clicking the 0-4 buttons performs the actions listed above.

Code needs to be De-Bugged

14 | FAQ SSS enumeration.nb

in[26]:= Manipulate [
Column|{

Row [{
Button["Reset", code = ""; ans = {{1}}],
Button["@", code = code <> "0"; ans = Join[ans, {{}, {}, {1}}11,
Button["1", code = code <> "1"; ans = Join[ans, {{}, {1}}]1 1,
Button["2", code = code <> "2"; AppendTo[ans, {1}] 1,
Button["3", code = code <> "3"; AppendTo[ans[-1], 1]],
Button["4", code = code <> "4"; ans[-1][-1] ++],
Button["Back", code = StringDrop[ans, -1], Most[ans]]
1,

Grid[{{},
{"gq-code: ", code},

{"answer: ", ans},
{"strings: ", strings = StringJoin @ee (ans /. (Reverse /@ characterWeights))},
{"ruleset: ", If[0ddQ[Length[strings]], strings = AppendTo[strings, ""]11;
Rule eee Partition[strings, 2, 2]}
}, Alignment - Left],
}1, {code, {""}}, {strings, {{}}},

{ans, {{{1}}}}, ControlType - None, SaveDefinitions - True]

Oout[26]=
Reset |0 | 1]2]|3]4]|Back
g-code:
answer: {{1}}
strings: {A}
ruleset: {A-}
Ruleset tests:

To save time and accelerate the use of the enumeration in an actual program, any ruleset that con-
tains a problem can be skipped without generating the sessie and its network. In addition, the pattern
and order of the enumeration allow us to skip over multiple cases at once. If such a “long-jump” is
possible, the test returns the first ruleset in the enumeration that does not have that particular prob-
lem, i.e., the target of the long-jump. The main tests are:

FAQ SSS enumeration.nb | 15

Tests that eliminate the ruleset, and allow long-jumps:

Out[51]=

Test

Description

TestForConflictingRules

(+ Two rules conflict if the second rule never has a chance
to be used because the first rule preempts it. Ex/ {"C"->"",
"A"-"B", "AA"-"C"}: rule 3 conflicts with rule 2, so the

ruleset is equivalent to {"C"-"", "A"-"B"}, omitting rule 3 x)

TestForNonSololdentityRule

(+ an identity rule is a rule in which a string is replaced by itself,
no further rules will be used if the identity rule ever matches =)

(or TestForldentityRule)

(= if solo identity rules are treated separately =)

TestForNonSololnitialSubstringRule

(= Ex/ {"A"-"BAB", ...} If 1st rule matches, it will never fail again. =)

TestForRenamedRuleSet

(= If the characters used in the strings of the ruleset are
permuted or replaced by other characters, the SSS will look the
same up to a permutation of colors, and the causal network will
be identical. Ex/ {"BAB"-"ABA", "A"->"B", "B"->"AA"} is
indistinguishable from {"ABA"->"BAB", "B"-"A", "A"->"BB"} %)

TestForUnusedRules

(+ Still under construction: the idea is that if a rule is never used, it
could be omitted without affecting the results. The difficulty is in
being sure that the rule will never be used, rather than only rarely.)

Tests that eliminate the ruleset, but don’t allow long-jumps:

out[53]=

Test

Description

TestForShorteningRuleSet

(= at least one rule shortens the state string,
and none lengthen it, so this will eventually die out =)

TestForUnbalancedRuleSet

(= some letter appears on only one side of the rules, so that letter is either created or
destroyed, but not both: that letter is not needed for the main pattern of the sessie *)

Other Tests:
Oout[-]=
Test Description
TestForAll (= checks all of the above tests, in optimum order to allow longest possible long jumps =)

Camille continued Christen’s effort to identify the long jump target ruleset directly based on the
quinary (base-5) index of the problem ruleset. The plan was to speed up the tests, as well as to
increase understanding of the enumeration. This effort will now be transferred to the new base-3

algorithm (see below).

New Trinary Enumeration

16 | FAQ SSS enumeration.nb

out[e]=

Out[«]=

This may (perhaps) supersede the quinary enumerations, since the math is significantly simpler, and
the only disadvantage is the appearance of some invalid codes, which are easily jumped over, much
as with any long jumps.

In the course of lengthy discussion, we have fine-tuned the new, trinary enumeration that will gener-
ate all sessie rulesets. The base-3 codes represent the following operations:

0 = Increment last character (if there is one)

1 = Append an A
2 = Start a new empty/null string

A couple of points to note:

1. The math is simpler than using the original sessie enumeration (published in IS&R) or the general-
ized or reduced quinary (base-5) enumerations (published in CCMK). But unlike them, some forbidden
codes exist, yielding no ruleset.

2. Aninitial “0” or a “20” anywhere in the trinary code is invalid, and should simply be skipped over in
running through the enumeration. This is not a hardship, since it’s easy to check and go on. The
simpler math may make it worth it.

3. Our working version is to also drop any ruleset generated that has an odd number of strings. This
can easily be checked by counting the number of times “2” appears in the trinary operation code, no
need to even generate the ruleset! (Sadly, | see no way to long-jump over runs of such cases in the
enumeration, so we just check and go on.)

4. The next task is to determine the easiest way to perform long-jumps over runs of invalid cases, non-
final creation rulesets, conflicting rules, initial substring rules, etc. These are all situations that occur
in runs in the enumeration, so if found, the odds are we can long-jump over a run of similar cases, and
so quickly move on to more interesting cases. (That is the strength of the enumeration.)

Below is the list of the first 50 positive integers, first in base 10, then in base 3, with the ruleset gener-
ated by the new enumeration algorithm, if any, shown. In case of an invalid ruleset, the “ok?” column
indicates why: “...20...” means that the trinary code contains the digits 2 and 0 sequentially (new
empty string followed by increment last character of current string: impossible), “odd” means that an
odd number of strings was generated, a situation that does not correspond to a ruleset, which must
have an integer number of rules, an even number of strings (each search string has a corresponding
replacement string).

Index | Base-3 [Ok? | Ruleset

1 1 odd

2 2 me_

3 10 odd

4 11 odd

5 12 "A' "
6 20 ..20...

7 21 "MotAY

8 22 odd

9 100 odd

10 101 odd

11 102 "B"->""
12 110 odd

13 111 odd

14 112 "AA"-""
15 120 ...20...

16 121 "A"S"A"
17 122 odd

18 200 ..20...

19 201 ...20...

20 202 odd

21 210 "M B
22 211 "MSTAA
23 212 odd

24 220 odd

25 221 odd

26 222 e
27 1000 odd

28 1001 odd

29 1002 "Cro""
30 1010 odd

31 1011 odd

32 1012 ...20...

33 1020 ..20...

34 1021 "B"->"A"
35 1022 odd

36 1100 odd

37 1101 odd

38 1102 "AB"->""
39 1110 odd

40 1111 odd

41 1112 "AAA"-""
42 1120 ...20...

FAQ SSS enumeration.nb | 17

18 | FAQ SSS enumeration.nb

43 1121 "AA"-"A"
44 1122 odd

45 1200 ..20...

46 1201 ..20...

47 1202 odd

48 1210 "A"->"B"
49 1211 "A"S"AA"
50 1212 odd

Note that the presence of “...20...” anywhere in the trinary operation code means we can immediately
increment the 0 to a 1, and zero out anything that follows: “... 20 ...” =>“... 21 000...0”, rather than
justincrementing the final digit of the code. Thisis a long-jump.

In the table below, all invalid cases have been omitted:

out[e]=

Side-trip: Enumerations of Turing Machines:

Index | Base-3 | Ok? [Ruleset

2 2 T

5 12 T

7 21 A

11 102 gy

14 112 TAAT

16 121 AT AN

21 210 gy

22 211 o UAA

26 222 o

29 1002 nCnm

32 1012 WBAT

34 1021 TBIA"

38 1102 "AB'"

41 1112 "AAA"S""

43 1121 TAA"SA"

48 1210 AT RN

49 1211 "A"S"AA"

53 1222 AT

63 2100 m_nen

64 2101 M WBA"

66 2110 AR

67 2111 "MSTAAA"

71 2122 AT

77 212 o AT

79 2221 AT

&3 10002 i p NI

86 10012 NCAT

88 10021 CLIAY

92 10102 BB

95 10112 "BAA"-""

97 10121 "BA"-"A"
Next job:

FAQ SSS enumeration.nb | 19

Identify what long-jumps can be triggered by the various ruleset tests, and find the simplest

way to implement them. (Directly operating on the trinary code?)

https://demonstrations.wolfram.com/SmallTuringMachinesWithHaltingStateEnumerationAndRunnin

20 | FAQ SSS enumeration.nb

gOnAB/

https://demonstrations.wolfram.com/SimulationOfATuringMachine/

FAQ Sessie Intro, 2025.2.12, Kenneth Caviness and Colton Edelbach

